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Solutions at 3 Different Levels
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New Energy Solutions Optimised for Islands
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Technology & Innovation

* |Implementation of Demand Response (DR)
schemes based on available local Flexibility

= Optimal energy management of building’s
distributed energy resources

* Dynamic Islanding

* Optimized Load Sharing & Power
Management

= Seamless inclusion of EVs (V1G & V2G) and
novel schemes for EV Profiling
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Edge Intelligence for Demand Response
Applications

 Fog-enabled monitoring and control of customers B"ilding
Fault-tolerant architecture and DR application Enefg

 Lightweight flexibility & load forecasting

R _ Efficiency
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Adaptive Flexibility Estimation System (AFeS)

Energy flexibility in residential demand is as an indicator of how
much load can be shifted or reduced within user-specified limits
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The main key features of the AfeS:

« Ability to estimate with high precision the future flexibility with the help of
technologies such as Deep Learning

. Ability to adapt to any new client without prior knowledge of him by
analyzing his daily electricity usage patterns

« Provide flexibility for demand response without compromising the
comfort of residents
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Adaptive Flexibility Estimation System (AFeS)

Not only AFeS detects the available flexibility but also whether the
customer is willing to dispose it
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Customer Engagement in DR schemes

. Engage the end-user to participate in DR, using gamification.

*  Visualization for the Aggregator for improved DR portfolio
management.
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Recommendation Engine for Building
Performance Optimization

Device Recommendations (Table View)

Real-time users’ recommendations (IHVAC (Temperature]

Living room

. . . . . Curregnt Condition: 25 °C

Buildings performance optimization __ Recommendation: 25 °C

@HVAC (ON/OFF)
Living room

Energy SaVingS Current Condition: ON

Recommendation: OFF
. @Lighting
Users’ comfort preservation Living Room
Current Condition: 70 %
Recommendation: 0 %

" Thermal & visual comfort (@) Spot Lamp (Smart Plug)

Living room

» Two operation modes: Current Condition: OFF

Recommendation: OFF
. TV (Smart Plug)
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Thermal Comfort

= Non-intrusive and low-cost estimation of thermal comfort levels

= Exploit the least possible data Thermal Comfort

= Estimate thermal comfort by exploiting the most accurate method (ANSI
ASHRAE Standard, Fanger’s PMV) eliminating the subjectivity of personal
factors
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Visual Comfort

= Non-intrusive and low-cost estimation of visual comfort levels
using the least possible data

= Access accurately visual comfort only with indoor illuminance

T | Visual comfort
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Personalized energy recommendations

General recommendations based on indoor conditions
User-based recommendations based on reported consumption values
Estimation of energy actual and potential savings

Production of automatic recommendations specific feedback to adapt
each recommendation to the user profile.

Energy awareness enhancement by utilizing a simple sensor infrastructure
and the least building information

Personalized recommendations based on user preferences adjusting to
user's feedback

Event-based recommendations triggered either by abnormal sensor data
or unusually long usage of high load devices.
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Prescriptive maintenance

1. Data Collection & Storage
2. Decision Support

3. Knowledge Extraction

4. General prescriptions
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— —— s maintenance
e [Tl ] [V | | residential

!r Smart Plug: // IOT Devicez | i ,L
et S e

' ' ) 1 |
) X . — . ! e
) Anomaly Detection Failure Diagnosis Device-specific i Device Health r W r
/’ Smart Plug, /' / 10T Devicey, / Algorithm S—— Module maintenance options | | Monitoring l I l
1
[ EEP. | i : |
____________________
EEP ; T ‘
2
P |

g 0

e-proces Prescriptions |
DB

3/7/2023

~




Dynamic EV Profiling in Smart Districts for Local
Flexibility

= Non-parametric algorithm for clustering EV users based on their EV
charging behavior

=  Set of clusters describing common behaviors found amongst total EV user
population

=  Distribution of the total sessions of a single user

Ountorng of Connacton Time vi Disconnes Time

e
Comman it Tome

Non-parametric Clustering results

= Use of tree-based machine learning model XGBoost implementation for
predicting user’s departure time based on historical data

Connection time | Estimated departure |

Actual departure
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25/07 16:48:59

2507 12:59:02

23/07 19:00:40

31/0707:39:35

31/07 16:24:03

31/07 13:37:30

08/06 07:49:16

08/06 09:48:19

08/06 09:20:14

13/0517:07:27

13/03 18:34:12

13/05 18:44:03

02/04 07:51:23

02/04 16:42:05

02/04 18:08:19

Estimated versus actual departure times for five sessions




Business Cases & Challenges

RES Power

= Optimal exploitation of RES generation

combined with storage units for residential or Genefﬂtion
o
forecasting

industrial prosumers

= Balancing of energy generation and
consumption by grid operators and
optimization of the way that controllable units
are dispatched

= Addressing the challenges introduced by the
integration of RES into the electricity grid (e.g.
grid stability issues)

3/7/2023




Hybrid approach for robust RES forecasting

RES Power

Analytical Modelling \ / Data-driven modelling \ Genefﬁtion

) ) “  Flexibl
Derives from physics laws eXIbie

*  Problem agnostic o
Domain ifi ) . ‘ t
° ‘,m >pecitic “  Low interpretability, O'GGQ’ |ﬂ9
May introduce errors due :
to imprecise modelling of TEGUIES |ETES VRlUmE ©f
. 8 data that cover all

K complex systems / K possible configurations /

4 Hybrid model )
Combines the best from both
worlds
Analytical calculations fine-tuned
\_ with machine learning models

3/7/2023




PV forecast
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Hybrid solution based on neural
networks increases accuracy by 22.8%
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Wind forecast

Timestamp

3/7/2023

Prediction Model MAE RMSE MMR (%)  SMAPE (%) Time (s}
Random Forest (RF) 0.14 0.18 36.37 2927 27312
Day-ahead scenario e
0.14 0.18 3587 29.29 368.7
Regressor (GBR)
sXireme Gradient
Boosting (XGBogst) 0.14 0.19 36.95 30.59 11043
g —Real . 8
- 8000 — Forecasted ng]{t Gtﬂd“m_t
8 Boosting Machine 0.13 0.18 34.75 28.53 93.64
5 % 6000 highi RN
g & Support Vector
S 4000 Regressor with RBF 02 026 5322 37.64 314.19
£2 kernel ( RBF SVR)
=5 2000
3 .
2 e 019 026 55.8 414 22595
H (MLP)
H o
oct s oct 8 Oct 11 oOct 14 Oct 17 Oct 20 Oct 23 Long shori-term
2021 memory RNN 0.16 023 47.2 3931 448.59
Timestamp (LSTM RNN)
Prediction Model MAE RMSE MMR (%) SMAPE (%) Time (s)
Random Forest (RF) 007 011 1849 2035 1129
.
Short-term scenario Gradient Boosting
007 011 1885 2028 15.49
Rearessor (GBR)
sXtreme Gradient
Boosting (XGBoost) 0.07 0.11 19.65 2117 458
g —Real
@ 8000 — Forecasted Light Gradient
g Boosting Machine 0.07 0.1 1838 20.16 392
5 E, 5000 LazhtGBM)
g & Support Vector
< 4000 with RBF 007 011 19.77 2112 11.73
é = kemel ( RBF SVR)
H
2000 bl e
3 Ll ? IIPP““ 014 019 40,66 3387 8.73
g
8 [
oct 5 oct8 Oct 11 Oct 14 Oct 17 Oct 20 Oct 23 L i s
2021 memery RNN (LSTM 0.07 0.11 20.53 24.54 13.55
RNN)
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Generation
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RES forecasting tested in ITI Smarthome

facilities and in numerous research projects RE‘ Pawef
Generation
forecasting
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Business scenarios

= Participation in DR schemes

= Optimal planning of the production line
operations

= Detection of abnormal patternsin energy
consumption — predictive maintenance

= Efficient handling of the most energy-intensive
loads

3/7/2023
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Disaggregation definition: The separation of an
energy signal into appliance/ machine specifi

Industrial Disaggregation may be conducted Iﬂd“’tfiﬂl hﬂd

on three different levels:

. Per machinery % @l Disaggregation

= Per product j

predictions historical data
lonitoring f” it -
I .
f \
! .

! [
rl .
| H
|
!
!
| Data
\ Preprocessing
\ yr—
Deep Learning N
Model

Large savings potential in the industrial sector
- Current applications mainly focused in the
residential/ commercial sector

= Per production line
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Suggested approach — Transformer NN

4 Stacked
Blocks

______________

Cm—— Industrial load
Disraggregation
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Multi-head self-attention block captures long-term dependencies

Multiple parallel attention layers utilized to preserve information in
different temporal patterns

Regular scale-dot product replaced with linear attention for
computational time reduction
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Suggested approach — Results

. TMDELD | || IMDELID per group
s Mhvic DPCL_DPCILEEL FEN WA MM rl py | Averee || e bR M py | Averase
TECA (%) 9128 S7.69 0622 0684 0030 9037 9500 9125 | D263 || 9031 9638 0156 9702 | D382
NDE 0.062 0155 0030 0035 0062 0055 00M 0047 | 0060 || 0081 0033 0047 0009 | 0.043

Industrial Transformer

(proposed) SAE 0110 0178 0018 0004 0041 0083 0012 0034 | 0060 || 0100 0018 0012 0019 | 0.037 I o
Time per cpoch (8] | 2600 2260 TR40 T770 AL 4500 1660 Zodr | I6a0 A 4 0 T 1 N 36V I R X 1
Inference time (s) | 19.28 1643 1342 1318 312 3483 1144 1818 | 1232 26,99 SRLTO 2604 3230 | 2342 n ’ 'I n ﬂ
] mj m Haww Hoaw m-ﬁ ?S.').mm I 2.5 Be1 LT HT.EE LD

NDE ﬂll‘;‘i ﬂl")H (.00 [IRIEE] LENE 6T (NI E =] ll_fi-l}'! (066 (.0 (.05 0.0155 0.005 1052
s2p 2] SAE (1.151 0).25% 0.0122 (1.0K16 (L2 LRI .055 0057 (.05 01.1497 (.04 (06T (L0125 LIRS
Time per cpoch (=) | 2300 Z4.00 2300 Z300 T7.000 7000 Z300 2300 913 2300 Z1.00 T.000  Z4.00 19.60

SAE (.27 .25 (0.1KE7 L0532 1L6EARS DA28 0.08T 0083 1.225 213 0.045 0,213 (L0410 0140
Time per epoch (s) | 550 31.00 NI R 1610 T6.00 BLOD hh.00 15.18 600 2600 16.00 Aaa0 45.50
Inference time (s) 1623 1.550) 1.674 1.5410) L6524 546 1.561 1.664 1835 1824 1.777 (1561 14922 1.521

Inference time (s) 1.4:31 1.2948 1.416 1308 0.441 0.502 1353 1378 1.140 1.451 1.204 0451 15006 1100
TECA (%) L ¥ &I(.23 6202 hil.449 [T Th.B b 5% RO.2T .94 G204 b1 HAT.H1 h2.74
m MDE 1.ATH 11534 .45 .40 1543 0ha1s 0446 0ABT 0453 458 (1.558 0647 442 hAY1
525 [21)

TECA (%) ROLOG BEAT 94.249 21TH 584 T2.30 401 W2HT EEEES Hh_01 92 10 Ta1l .02 HT.BA

NDE IR 11,164 (.1K36 (LM 216 162 .40 .06 0.095 (LO8T (055 (.1:38 L0005 U.O6ET

WGRU [74] SAE .19 0.192 0.020 0.125 (LBH [LE25 0.033 0.0039 (L1857 (L0555 (.03 0504 .02 0137
Time per epoch (s) | 92,00 91.00 2.0 A1.10] 5.0 2700 W10 200 Th.05 a0.00 9100 27.00 1.0 TATH

Inference time (s) 540849 54008 G062 5.6 23215 2.1 (00 60025 GG 54954 5035 2.193 54921 XL

TECA (%) HEHA Bh.ET ERNCES 94142 HA11 LT 1451 FLERTE] 002 ¥7T.T1 95 5 B3.26 9655 NLTT

NDE (1.1ME 11,156 .1K51 (LM [LXUr! LX) (X% 0060 (L1066 .08 0.10:54 (045 (L045 LI

SAED-dot {4]) SAE 11165 11190 0.004 .012 (L1545 0075 0.023 (.06 (1.059 0177 0.008 (.1TH L0035 .10
Time per epoch (s) | GLAN A01.00 NI AL 15.16) 15000 B1.00 51.00 11.75 A0.00 B0.00 15000 50.00 41.25

Inference time (s) S0E5 5108 2067 2021 1UG55 1R 2928 2028 2505 S047 28914 10438 BRI 2517

THECA (%) HEAA Bh.AT 95.81 15,30 TE.A H201 408 HEESI L X751 9415 EER] RG] U176

NDE [INEEH .156 .0651 (LKA (110 LLXLE i 0.0:35 00449 072 0.0 .04 01.050 I U066

SAED-add E_l SAE 0. 165 11196 (L0014 (.122 [t .111 0.017 (.062 .111 0.155 .021 (1050 (1035 .UHD

Time per epoch () [ 6100 62 (0 6 () al TR000 TADMY 6200 [i2RUY] AllLT5 (N1 [ R LR 62 (0 oL
Inference time (s) A275H A.474 A 153 4.1449 1484 1444 4241 A.265 ERiEE A.361 A4l 1.421 41410 BN

= Tested on a real-life public industrial dataset (IMDELD),
across 8 machines

= Results outperform other SoTA literature approaches
with different deep learning architectures
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Suggested approach — Results

Industrial load

400k

200k

’ - o, . . o o
ML AR s : :
08:00 10:00 12:00 14:00 16:00 18:00
Mar 27, 2018

BO0K

400k

08:00 10:00 12:00 14:00 16:00 18:00
Mar 27, 2018
— Total power consumption == Aggreqate power consumption pelletizer-I11 consumption pelletizer-1 consumption
== millingmachine-I consumption == millingmachine-II consumption == gxhaustfan-I consumption == exhaustfan-II censumpticn

= doukblepolecontactor-11 consumption doublepolecontactor-1 consumption

= Individual machines successfully disaggregated from the
aggregate power signal
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Business scenarios

= Optimal energy management of VPPs
= Resilient application of various DR schemes
= Provision of ancillary services through VPPs

= Cross-energy sector VPP formation (RES, ESS,
EV chargers, CHP etc.)

= Flexibility exploitation through demand-side
management in medium and large industrial
applications

= Community-driven resilient microgrid planning
and management

3/7/2023
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One Framework, several applications
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Real-time
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SmartHome Microgrid 1 Home

58 Thin Film (CIS) panels
2280 SW orientation/ 180 inclination 3¢ inverter 10.0-3-M

9.57 kWp 2-MPPT channels




Distributed ESS Management

.

Energy management o MRS R (. "

services for BESS T

' [ | 7

= Monitoring of facility

assets, predictive =" P
maintenance Y |

= Optimized energy/cost
managementVs.

occupant’s comfort,
offering various
optimized options to the
end-users

TRL 7
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Battery
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Reliable Battery Solutions



Expanding to Cross-Sector Energy

Utilization

Integration of Distributed Energy Resources
targeting energy optimisation:

TRL 7

All energy carriers in a single view

Management of various assets, located in different
sites

Real-time depiction of active energy flows overview
(e.g. electrical storage)

Actual financial balances outline

Historical and real-time forecasting performance
evaluation

Integration of electrical & thermal energy systems

Application: Residential, Commercial & Tertiary
Buildings

.......
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Optimems

Optimization of energy sources:

TRL 7

Load

RES

Storage
Energy prices

Optimization:

What to do with energy generated by RES?

When to charge or discharge the storage equipment?
When to sell or buy energy from the Grid?

When to shift loads?

@

optimems



M@BI ER SMART CHARGING a ‘ Vattenfall - Netherlands

L Monitoring A Reguests > Request: fef021c4-ddca-4380-8379-3a184d0e409
2 Requests Request
2% Customers
O pt| m iZ e d V P P ener g y I D 1ef021c4-ddca-4360-8379-3af84d192409 Start Time 22/09/2021 11:00
mana g ement fo r EV & Sessions Created  22/09/202110:53 End Time 22/09/2021 12:00
Pa rking lots Type MAXPRED Reward s0€
Activate Activate Penalty -15¢
Action 1kW at Vastmannagatan 72 Cost Acceptance :-49.048£

Optlma|VlG and V2G Status  ACCEPTED (¥
charging schedule

Implementation of Demand-
Response signals (load
dispatch type)

Charging Sessions 10
monitoring

Dynamic Pricing integration

Optimized Charger Power Exchange

12

11:00 1m:15 130 11:45

B 10741M6/GARO-M1076362-4_211 [ 1074114/GARO-M1076362-2_21
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Scope: Provide added-value services to
Distribution Grid

Beneficiaries: Aggregators, Prosumers, DSO

= Trade of electricity / flexibility automatically in a
secure and optimized manner based on Grid
state

= Optimal management of distributed energy
resources

= Cross-sector energy sector optimal
management (electric, thermal, gas)

= Predictive Maintenance in Distribution Grid
assets (e.g. Transformers)

Smart Grid
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Formation of dynamic VPPs

Integration with a Local

Flexibility Market to provide ety e
feXiDIIty tODSOUPON = N~ [ -

request (directly or through 4 50u
the market using price
signals) - < 59.8- B 2

Trading of excess
aggregated flexibility to
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Information views about
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asset management | m——
Head-to-head comparison of

prosumers’ metrics

Joan walton

Average Flexibity (KWh)
°i 8 n A 110

= rrent Generatiol

Assets Included Current Generstion

HVAC

Electric Water
Heater

Light
EV charger
Battery

Solar panel

r:m , HEOND l| R\e URBENER
L & Energia

° Available Current Flexibility Buildings Involv, od

VPP Forecasted Aggregated Flexibilit y

au
w
50
I I l .
2 - - =
1100 s 130 s 1200 1215
e




Real-time simulation of
electric, natural gas and
district heating network
inter-coupled via Power-to-
Gas, Power-to-Heat and
Combined Heat & Power
Flexibility Units

Novel KPIl-based assessment
framework

Scenarios Creator and
Dynamic Comparison

Distributed Simulations
Orchestrator

Simulation Comparison
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Fnergy Efficiency at DN level  “©DREAM

enabling new Demand REsponse Advanced, Market oriented and
secure technologies, solutions and business models

=  Geographical representation of the
DN

=  Power flow depiction along with Before
critical levels of substations and
feeders and connection points of
RES/DER.

=  Obijective: loss minimization along
with Voltage profile improvement,
via DER utilization, i.e. RES
adjustment / load flexibility.

=  Congestion avoided After




INTERPRETER project: Modular grid management solution

Predictive Maintenance on Transformers

The problem to be solved:

= Dynamic Assessment of T/F State of Health (SoH)

= Forecast diffused gases in T/F

= Minimize costly incidents(faults) and Maximize equipment
lifespan staps ahaad TE g : 8

SVRI(kernel="linear')
Mae: 0.97 Mape: 0.32

—— Forecasted

Core Technologies utilized: 2] —
= Timeseries analysis 15 4
= Data preprocessing 10 1
= Machine learning techniques 3

= @Grid Search, Feature Selection  °

= Multi-objective Optimization N
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INTERPRETER project: Modular grid management solution

Predictive Maintenance on Transformers Gfid
Opcrators

= Distribution Grid Modelling & Simulation

= Data from UK Power station transformers (2010-2015)

= Regression forecasting for diffused gases (multi-model)

= Use predictions to search for faults in the transformers and
assess SoH

= Duval’s Triangles & Pentagons Achieves over 32%
= Optimize faults to provide solutions == i\ the overall SoH
improvement
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INTERPRETER project: Modular grid management solution

()
Non-technical losses detection Gﬂd

The problem to be solved:

* Provide support to DSO operation staff to locate non- ope'ﬂ‘O"
technical losses

= Quantify losses at MV/LV transformer level

= Create a hybrid detection tool to identify
*  Clients with suspicious smart meter readings
* Line sections with high losses

Core Technologies utilized:
= Machine learning techniques

= Timeseries analysis 0.002 e T

= Data preprocessing A ;'.°...

* Feature Selection ;" = * ::. . | L Y

= load-flow analysis % | e 2 fepecc :"‘_;4
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Spatio-temporal analysis of AVmean
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INTERPRETER project: Modular grid management solution
Non-technical losses detection

®
= Heatmap of top 20 locations with highest of Dvmin_max G'Id
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- Indicates the location of possible frauds
which are not related with the grid model

3/7/2023




:"% INTERNATIONAL
HELLENIC
UNIVERSITY

Thank you

Contact:
Prof. Stelios Krinidis

Ass. Prof. at International Hellenic
University (IHU)
Academic Researcher at CERTH
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